Styling the New Web

Web Usability with Style Sheets

Steven Pemberton

Plan for the day

· Introduction, basic CSS: selectors, fonts, colours; Practical

· Break

· Intermediate-level stuff: advanced selectors, inheritance, margins, borders, padding; Practical

· Lunch

· Advanced stuff: text properties, background, positioning; Practical

· Break

· The Future: XML and XHTML; Practical

HTML and SGML

· HTML (up to now) has been an SGML application.

· SGML is intended to define the structure of documents

For instance, <H1> </H1> defines a heading without specifying how it should look.

 …

specifies a list of items.

· These classifications often have semantic significance. <I> and were mistakes, use and instead

Contamination

· Netscape started to add their own tags, based on the idea that with their market penetration they could get a head start.

· Unfortunately most tags added by Netscape are presentation-oriented tags – which do not fit in the structure orientation of standard HTML – such as <BLINK> and

· These do specify how the item should look, and have no inherent semantics; Microsoft also followed suit.

Style Sheets

· In order to get HTML back to being a structure language, W3C hosts work on Style Sheets, and producing a Style Sheet Language CSS – Cascading Style Sheets.

· Aims:

· easy to write

· easy to implement

· has a development path.

· CSS is a 90% solution

· For all typesetting possibilities XSL is being developed

CSS

· CSS is a language that allows you to specify how a document, or set of documents, should look.

· Advantages:

· Separates content from presentation

· Makes HTML a structure language again

· Makes HTML easier to write (and read)

· All HTML styles (and more) are possible

· You can define a house style in one file

· Accessible for the sight-impaired

· You can still see the page on non-CSS browsers

· CSS is also an enabling technology for XML

Levels

· CSS has been designed with upwards and downwards compatibility in mind.

· CSS1: basic formatting, fonts, colours, layout; quick and easy to implement

· CSS2: more advanced formatting; aural style sheets

· CSS3: printing, multi-column, ...

· In general a valid CSS1 style sheet is also a valid CSS2 style sheet.

· In general a CSS2 style sheet can be read and used by a CSS1-supporting browser.

Check your log files!

· More than 95% of surfers now use a CSS1-compatible browser:

· Microsoft IE 3, 4, 5

· Netscape 4

· Opera 3.5

· While the quality of the support for CSS on these browsers is varied, you never need to use the tag again!

· Today we’ll be largely talking about CSS1, since it is widely implemented

Why is CSS good for usability?

· Presentation is not hard-wired in the HTML

· Users can make their own choices (font size, colours, etc), and override the documents

· Pages load faster

· Pages become more accessible for the sight-impaired (who can use speech browsers)

· Pages are viewable on a wider range of platform types

Why is CSS good for the author?

· Documents become easier to write (and read)

· Presentation is centralised

· Easier to provide a house style

· Wider range of presentation possibilities

· Separation of concerns

Using CSS

External file:

<html>

<head>

<link rel=”stylesheet”

 type=”text/css”

 href=”style.css”>

</head>

<body> ...</body>

</html>

Inline style is also possible

You can also put your style sheets in the head of your HTML document:

<head>

<style type=”text/css”> <!--

 h1 { color: blue }
--> </style>
</head>

The comment symbols <!-- --> are optional: they hide the style sheet from old browsers.

For many reasons, it is better to use external style sheets

Style sheets for XML

For XML use a processing instruction:

<?xml-stylesheet type="text/css" href="sheet.css"?>

Put before first element of the document

HTML Style Attributes

HTML also allows you to use a STYLE attribute:

<P STYLE=”color: red”>Stop!</P>

This is bad practice, and undoes many of the advantages of CSS.

Doesn’t (necessarily) work for XML.

Warning about HTML: <p>

· <P> is not the same as
!

· Don’t do this:

<H1>The Title</H1>

This is the first paragraph<P>

And this is the second

· But this:

<H1>The Title</H1>

<P>This is the first paragraph</P>

<P>And this is the second</P>

· Your CSS will work better, and future versions of HTML will require it anyway.
Structure of CSS1

· CSS has rules consisting of selectors and blocks;

· Blocks are a series of declarations between curly brackets, separated by semicolons:

H1 { font-family: helvetica, sans-serif;

 font-weight: bold }

· Declarations consist of a property followed by a value
(declarations may also be empty):

font-size: 10pt

Comments

· Comments are expressed between /* and */

· Example:

/* This is a comment */

Basic Selectors

· Basic selectors are just element names

· H1

· BODY

· P

· Several rules can be joined together using the comma:

· H1, H2, H3, H4, H5, H6 { font-family: helvetica, sans-serif}

· Don’t use html as a selector: use body instead

Warning about HTML: case

· HTML is case-insensitive. You can write

<H1>Title</H1>

or

<h1>Title</h1>

· Therefore, you can write selectors either as

H1 {font-weight: bold}

or

h1 {font-weight: bold}

· Future versions of HTML will be case sensitive, so get used to specifying your selectors in lower case
Examples

· h1, h2, h3 { font-family: helvetica, sans-serif }

· body { color: white; background-color: black }

· p { text-align: justify }

Styling text

· There are a number of properties for affecting the style of text:

· font-size, font-weight, font-style, font-family, and font-variant

· line-height, vertical-align, word-spacing, letter-spacing

· text-align, text-decoration, text-transform, text-indent

font-size

· You can use absolute or relative sizes. Relative sizes are in relation to the parent element (e.g. <body>)

· Example: h1 {font-size: 200%}

· Example absolute sizes:

10pt, small, medium, large, x-small, xx-small, x-large, xx-large

· Example relative sizes: larger, smaller, 120%, 1.2em

· Initial value is medium
Use relative sizes, or the named absolute sizes

Warning about ‘initial values’
· ‘Initial value’ means ‘if no other value has been assigned’

· For HTML most values have been assigned by the browser already

· Example: ‘font-size’ has an initial value of ‘medium’, but the browser will likely have set a larger value for <h1>

Lengths

· Relative:

Ems: 4em

X height: 1ex

Percentages: 120%

Pixels: 12px (A pixel is not a hardware unit)
· Absolute:

Inches: 0.5in

Cm: 2.5cm

Mm: 25mm

Points: 10pt

Picas: 2pc (1pc = 12pt)
font-weight

· Values:

normal, bold, bolder, lighter, 100, 200, …, 900

· normal = 400

· bold = 700

· Initial is normal

· Example: h1, h2, h3 {font-weight: bold}

font-style

· Values: normal, italic, oblique

· Initial: normal
· If you specify italic, but the font only has an oblique, you get that (but not vice versa)

· Example: em {font-style: italic}

font-family

· Values: a list of font names, followed by a generic font

· Generic fonts are: serif, sans-serif, monospace, cursive, fantasy:

Serif, sans-serif, monospace, cursive, fantasy

· Each font is tried in turn until one is found

· Example:

h1, h2, h3 {font-family: arial, helvetica, sans-serif}

· Initial value depends on browser

You should always end with a generic family

Colours:
color and background-color

· The foreground colour (text, borders, etc) is given with the color property

· The background colour is given with the background-color property

· Values are 16 colour names: black, white, gray, silver, red, maroon, yellow, olive, green, lime, blue, navy, purple, aqua, fuchsia, teal,

or #F00, #FF0000, rgb(255, 0, 0), rgb(100%, 0, 0)

· Example: body {color: black; background-color: white}

Practical 1

· On your machine, you will find a file called practical1.html. View it with the browser, to see what the defaults look like.

· Create a CSS file called practical1.css, and edit the HTML file to use it.

· Make the following changes to the presentation:

· elements should have a yellow background

· Headings should be in a sans-serif font

· Look at the results.

· Now make the presentation white text on blue.

· What colours are aqua, fuchsia and teal?

Class Selectors

· If an element has a class attribute, you can select on it

· In the CSS:

p.important { color: red }

· In the HTML:

<p class=”important”>Do not phone before 09:00!</p>

· or all “important” elements regardless of type:

.important { color: red }

Use of HTML: span

· Use the element as a carrier of class information:

Do not cross

· If you want such text to be styled in some way on non-CSS browsers as well, use or instead:

Do <em class=”important”>not cross

Do <strong class=”important”>not cross

ID Selectors

· You can select an element with an ID tag with #:

#p001 { }

<p id=”p001”>Now is ...

· or a particular type of element with an ID:

h1#p023 { }

<h1 id=”p023”>The Next Big Thing</h1>

Used rarely; class is more useful

Contextual Selectors

These allow you to address the nesting of the document:

h1 { font-weight: bold }

em { font-style: italic }

<h1>Now is the time!</h1>

(Now is the time
h1 em { font-weight: normal }

(Now is the time
Examples of contextual selectors

· em { font-style: italic }

· em em { font-style: normal }

Nested em’s revert to normal font

· ul li { font-size: medium }

· ul ul li { font-size: small }

· ul ul ul li {font-size: x-small }

Nested unordered lists use smaller fonts

· More specific selectors take precedence (more later)

Inheritance

· Note that in

h1 { color: blue }

<h1>Now is the time</h1>

(Now is the time
that the element is also blue. It is inherited by the element.

· Many properties are inherited, but some are not:

h1 { border-style: solid }

(Now is the time

If this were inherited by the , you would get (effect exaggerated here):

(Now is the time

Use of HTML: <div>

· Like for inline text, use <div> to carry class information for larger blocks:

<div class=”chapter”>
<h2>Chapter 2</h2>

<p>It was dark. … </p>

...

</div>
div.chapter h2 {font-family: pembo, cursive}

display

· Some elements (like ,) are inline. Others (like <p>, <h1>) are blocks. The display property specifies this for the presentation

· Values: block, inline, list-item, none

· Block: says that the element represents a block

· Inline: that the element represents inline text

· list-item: that the element is a list item (in HTML) (more properties later)

· none: the element is not displayed at all.

· Initial value: not important for HTML; different for CSS1 and CSS2, so never assume a default!
Example of display: none

· In the CSS:

.hidden {display: none}

· In the HTML:

<p class=”hidden”>

Your browser doesn’t support CSS

</p>

· NB with:

body {display: none}

p {display: block}

The p’s are still invisible, since the whole body is invisible

text-align

· Values: justify, left, right, center

· Applies to blocks (I.e. elements with display: block or list-item)

· Initial: not defined

Box model

· All elements have this box model.

· All three are changeable:

H1 { border-width: 4pt; border-style: dotted; padding: 3pt}

· Also per part: H1 { border-top: 4pt solid red}

also left, right and bottom

Margins:
margin-top, -right, -bottom, -left

· Examples of values: 0, auto, 2em, 3pt, 1%, …

· Initial: 0

· Margins are in relation to enclosing element

· Percentage values refer to width of containing element

· Example: p { margin-left: 3em }

· Negative margins are allowed!

· Margins are transparent, so enclosing element’s background shows through

· auto means ‘as calculated by the browser’ (see width).

Warnings about use of margins
body {margin-left: 4em}

h1 {margin-left: -4em}

· <h1> typically has a larger font-size to <body>, therefore the ‘-4em’ on h1 is larger than the 4em on <body>

body {margin-left: 4em}

h1 {margin-left: 0}

· h1 will have the same indent as the body (margins are relative to the parent element, not the screen)

Shortcuts: margin

· There are a number of shortcuts for some properties. For margins you can set all 4 sides at once:

margin: 1em (sets all 4 to 1em)
margin: 0 1em 0 2em

· The four values go clockwise and set top right bottom left respectively (TRBL: mnemonics treble, tribal, terrible, true-blue)

· Missing values are obtained from the opposite side:

“margin: 0 1em” is the same as “margin: 0 1em 0 1em”

Use of margins

· Use margins for

· indenting

· exdenting (using negative margins)

· adding space between paragraphs

· etc.

· When two margins meet vertically, only the larger is used (so the gap between a heading and the following paragraph is the larger of the heading’s margin-bottom and the paragraph’s margin-top)

Padding:
padding-top, -right, -bottom, -left

· These properties are similar to margins

· Examples of values: 0, 2em, 3pt, 1%, …

· Initial: 0

· Percentages refer to parent element’s width

· Negative values are not allowed

· Padding takes the colour of the element’s background

· Example: padding-top: 1em

· Property padding works like margin, and has up to 4 values (TRBL):

padding: 1em 0em 2em 1em

Example

· Blockquote

{margin: 1em;

background-color: yellow;

 padding: 1em

}

Borders: border-top-width etc.

· Borders can have a width, style and color.

· For widths:

· Properties: border-top-width, -bottom-width, -right-width, -left-width

· Example values: thin, medium, thick, 1pt, 1em, …

· Initial: medium (but see border-style)

· Example: border-left-width: 1pt

Shorthand: border-width

· Property border-width can have up to 4 values, just like margin and padding (TRBL)
· Example: border-width: 1pt 2pt

· So top, bottom=1pt,

· right, left= 2pt

border-style

· Property: border-style

· Values: none, dotted, dashed, solid, double, groove, ridge, inset, outset

· Initial: none

· Sets value for all 4 sides! (But see border-top, border-right, border-bottom, border-left)

border-color

· Property: border-color

· Values: one to four colours (see color property)

· Initial: whatever value the color property has for this element

· Four values work like margin (etc): TRBL

· Example:

border-color: red white blue

(left side is thus also white)

Shorthands:
border-top, -right, -bottom, -left

· Values: width style colour
· Example:

 p.note {border-left: medium solid black}

· Initial: as individual properties

· Values may be in any order (border-top: thin red 1pt)

· Any of the three values may be left out (but see warning later):

border-top: thin blue

One last border shorthand: border

· Property: border

· Values: width style color
· Values may be in any order, and any may be omitted (but see warning)

· Sets all 4 sides

· Example

p.warning {border: solid thick red}

Beware when using shorthands!

· Border and border-top (etc) also set the colour, so with:

blockquote {color: black;

border: red medium solid;

border-left: dotted }

even though the colour isn’t mentioned in the border-left property, it is there! And its value is the value of color: therefore the left border will be black.

Better to be explicit.
Usage of borders

· Use borders for:

· Setting off text with a line each side

· Enclosing text in a box

· Putting a line under a paragraph

· Marking changed paragraphs with a line

· A border will almost always be too close to the text: use padding to set it off from the text

Height and width

The height and width of elements is normally determined by context or by the element itself.

For instance, for text, the width is determined by the width of the window, and the height by the amount of text.

Images have an inbuilt size.

You can change these defaults with the height and width properties.

· Property: height

· Values: auto, 100px, 15em, … (no percentages)

· Initial: auto

width

· Property: width

· Values: auto, 100px, 15em, 50%, ...

· Initial: auto

· Percentages: refer to parent’s width

· auto: calculated size, or intrinsic width for images.

· Example, to create a page of thumbnails:

img { width: 25% } (height is auto so will also scale to preserve aspect ratio)

Auto values for box model

· Normally ‘width’ is ‘auto’

· If no value is ‘auto’, margin-right will be set to ‘auto’

Practical 2

· Use the file practical2.html; create and link to practical2.css

· Indent all text except for headings by some amount

· Limit the width of the page to some length
(note: bug in IE 5)

· Make the headings white on blue, and right align them

· Make a stylesheet where only the headings are visible, and indented according to their depth (h1, h2, etc)

Text properties: line-height

· Example values: normal, 1.2, 120%, 1.2em, 12pt, …

· Initial: normal (browser specific)

· Better to use relative values
· If font-size is 10pt, then a line-height specified as 1.2, 120% or 12em would result in a line-height of 12pt. The extra space is equally spread above and below the line.

Warning about line-height
· There is a difference in inheritance: a number (e.g. 1.2) is inherited by the children, but in the case of other factors (120%, 12em), the resulting value (e.g. 12pt) is inherited. If the child has a different font-size, but no specified line-height, it may look wrong. Use numbers
body {font-size: 10pt; line-height: 1.2}

h1 {font-size: 20pt}

· h1 has a line-height of 20pt x 1.2 = 24pt

body {font-size: 10pt; line-height: 1.2em}

h1 {font-size: 20pt}

· h1 has a line-height of 10pt x 1.2em = 12pt

text-decoration

· Values: none, or any combination of: underline, overline, line-through, blink
· Initial: none
· Not all browsers implement blink.

· Example:

a {text-decoration: underline}

underline, overline, line-through, mixture
text-indent

· This specifies the indentation of the first line of a block of text

· Example values: 0, 4em, 1%, …

· Initial: 0

· Use negative values for exdenting a line.

word-spacing, letter-spacing

· These are used to stretch or compress text by adding extra spacing between letters or words

· Values: normal, 1%, 1px, ...

· Not widely implemented

vertical-align

· For effects like subscript and superscript

· Values: baseline, sub, super, top, text-top, middle, bottom, text-bottom, <percentage> (of line height)
· Initial: baseline

· Only trust baseline, sub, and super at present

· Example:

sub {vertical-align: sub}

Background properties: background-image

· Example values: none, url(back.gif)

· See background-repeat, background-position and background-attachment for details of how it is displayed

· Works on any element, not just <body>!

background-position

· Specifies where background image is to be placed, or where repeating is to start from

· Example values: 0% 0%, top left, center, any reasonable mixture of top, bottom, center, left, right, ...

· Initial: 0% 0% (=top left)

background-repeat

· Specifies how background image is to be displayed

· Values: repeat, no-repeat, repeat-x, repeat-y

· no-repeat: just once at start position

· repeat-x: repeat horizontally both sides of the start position

· repeat-y: repeat vertically above and below start position

· repeat: repeat in all directions (tile the element)
· Initial: repeat
background-attachment

· Specifies if the background scrolls with the page, or stays put

· Values: scroll, fixed

· Initial: scroll

· Use for instance to put a logo or water-mark that remains visible when the page is scrolled

Pseudo Classes: Anchors

A:link { color: blue }

A:visited { color: #f0f }

A:active { color: red }

A:link IMG { border-style: solid; border-color: blue }

· CSS2, but useful. When the mouse is over an element:

a:hover {color: red}

Note on <a>
a {color: green}

a:link {color: blue}

· This will colour elements green, and
 elements blue.

Beware!
· <p>Click here</p>

p {color: black}

a:link {color: blue}

“Click here” will be blue.

Pseudo element:
first-line, first-letter

· There are also selectors to select the first line and first letter of the formatted output:

p:first-line {font-variant: small-caps}
p:first-letter {color: red}

· Not widely implemented

Float

· Move elements relative to the parent

· Values: none, left, right

· Example. Logo always on the side of the window:

img.logo {float: right}
 img.logo {float: left}

· Initial: none

· Margins are honoured

Use of float

· Float works on any type of element, even text blocks!

· It can replace the use of tables for some layout

· p.menu {float: left; background-color: yellow;
 margin-left: ...

clear

· Allows an element to refuse floating elements one side or another

· Values: none, left, right, both

· Initial: none

· Example: h2 {clear: both}

Use of clear

· img {float: right} img {float: right; clear: right}

font-variant

· Values: normal, small-caps

· Uses a small-caps variant of the font

· Initial: normal

text-transform

· Values: none, uppercase, lowercase, capitalise

· Example: h1, h2, h3 {text-transform: uppercase}

· Initial: none

font

· This is a shorthand for font-style, font-variant, font-weight, font-size, line-height, font-family
· Example:

p.abstract {font: medium italic 10pt/12pt times, serif }

white-space

· Values: normal, pre, nowrap

· pre: use for <pre> like elements

· nowrap: text doesn’t get wrapped

list-style-type

· Values: disc, circle, square, decimal, lower-roman, upper-roman, lower-alpha, upper-alpha, none

· Applies to elements with display: list-item

· Example:

ul li {list-style-type: disc}

ul ul li {list-style-type: circle}

ol li {list-style-type: decimal}

list-style-image

· Example values: none, url(sphere.gif)

· Allows you to define your own sort of bullets

· Example:

ul.special li {list-style-image: url(red-ball.gif)}

list-style-position

· Values: inside, outside

· Default: outside

· Defines where the bullet goes. As you can see, this line has list-style-position: outside

· And if you look at this bulleted item, you will see that

it has list-style-position: inside

list-style

This is a shorthand

· Values: type style <url> position
· Example:

ul.special li {list-style: url(ball.gif) inside}

Cascading

· A browser has an implicit default style sheet

· The user may have a preferences style sheet

· Browser default (Reader preferences (Document

· You can combine several style sheets (= cascading)

@import url(house.css);

body { font-size: 30pt }

· You can override with !important:

body {color: black !important;

 background-color: white !important}

Selectivity of selectors

· !important wins

· browser (user (document

· id > class > no of tags in contextual selector

· pseudo-element = normal element,
pseudo-class = normal class

· Last specified wins if otherwise equal

· CSS rules win over HTML attributes (like bgcolor, align)

Practical 3

· Take a look at practical3.html, and fm.html

· Create a style sheet to make practical3.html look like fm.3

· Hints:

· Use where necessary in the HTML

· Use negative margins where necessary

· Use class=”…” where necessary

· Resize the window to make sure it still works at different sizes.

Implementation

· Already available in:

· Microsoft IE 3, 4, 5

· Netscape 4, (and Mozilla in the Future)

· Opera (fits on a floppy!)

· Emacs-w3

· Amaya

· Athena

· Closure

· HP ChaiFarer

· ICE

Level Compatibility

· All CSS1 rules are acceptable to CSS2 processors

· If a CSS1 browser comes across a CSS2 selector, it ignores the whole rule

· If a CSS1 processor comes across a CSS2 property or value, it ignores only the declaration.

Ignore rule: *[width] {font-size: 10pt}

Ignore declaration: p {overflow: hidden; color: blue}

Ignore declaration: h2 {display: run-in; color: blue}

CSS2 and 3

Later areas of work include:

· Speech

· Layout

· Fuller control

· Printing

· ...

CSS2

· Aural style sheets:

h1 { voice-family: male; pitch: low; speech-rate: slow}

· inherit as value for all properties

· Media types

@media print { body {font-size: 10pt} }

@media screen { body {font-size: 12pt} }

h1 {font-size: 2em}

· Control of tables

· Page layout

· Bi-directional text

· Web fonts

(CSS2)

· Generated content, and control over counters

· Text shadows

· Borders and padding properties fixed up; outlines

· display: new values

· Positioning of elements; z-index for overlapping

· Overflow control and clipping

· Font stretching and adjusting

· System colors, more units

· More to font, list-style-types

· + details

CSS3

· Printing

· Multicolumn

· Headers and footers

· ...

Where?

The definition of CSS1 can be found at:

http://www.w3.org/TR/REC-CSS1

The definition of CSS2 is at

http://www.w3.org/TR/REC-CSS2/

· CSS resources can be found at www.w3.org/style/css

Future Markup

· HTML was designed for just one sort of document (scientific reports), but is now being used for all sorts of different documents

· You could use SGML to define other sorts of document, but SGML is notoriously hard to fully implement
XML

· XML is a W3C effort to simplify SGML

· It is a meta-language, a subset of SGML

· One of the aims is to allow everyone to invent their own tags

· DTD is optional: a DTD can be inferred from a document

Consequences
· The requirement of being able to infer a DTD from a document has an effect on the languages you can define:

· Closing tags are now required
.... <P>....</P>

· Empty tags are marked specially

 <HR/> (or <HR></HR> etc)

Consequences 2
· CDATA sections must be marked as such (if they contain “<”, “&” etc.):

<SCRIPT>

<![CDATA[

 ... script content ...
]]>

</SCRIPT>

Consequence of XML
· Anyone can now design a (Web-delivered) language

· CSS makes it viewable

<address>

<name>Steven Pemberton</name>

<company>CWI</company>

<street>Kruislaan 413</street>

<postcode>1098 SJ</postcode>

<city>Amsterdam</city>

<speaker/>

</address>

So do we still need HTML?
· XML is still a meta-language

· There is still a perceived need for a base-line mark-up

· HTML has some useful semantics, both implied and explicit (search engines gladly use it, for instance)

HTML as XML application

· Clean up (get rid of historical flotsam)

· Modularise – split into separate parts

· Allows other XML applications to use parts

· Allows special purpose devices to use subset

· Add any required new functionality (forms, better event handling, Ruby)

Differences HTML:XHTML
· Because of the difference between SGML and XML, there are some necessary differences, for instance:

· Use lower case: <p> not <P>

· Attributes are always quoted:
<th colspan=”2”>

· Anchors use id attribute not name (and not just on <a> by the way):
 <p id=”top”>
Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head><title>Virtual Library</title></head>

 <body>

 <p>Moved to vlib.org. </p>

 </body>

</html>

Namespaces
<html xmlns="http://www.w3.org/1999/xhtml">

 <head><title>A Math Example</title></head>

 <body>

 <p>The following is MathML markup:</p>

 <math xmlns="http://www.w3.org/TR/REC-MathML">

 <apply><log/><logbase><cn> 3 </cn> </logbase>

 <ci> x </ci>

 </apply>

 </math>

 </body></html>
Transition
· XHTML 1.0 has been carefully designed to make use of ‘quirks’ in existing HTML browsers

· Use of a small number of guidelines allows XHTML to be served to HTML browsers

Examples of Guidelines
· Use space before / of empty elements:

 <hr />

· Use name= and id= on <a>:

 …
Result

· XML with related technologies gives you the freedom to define and deliver your own document types

· HTML is still needed as a base-line markup

· The new HTML gives a transition path to the future

· Since there is no built-in presentation semantics any more, CSS is essential
Practical 4

· File practical4.xml is an xhtml 1.0 document. Take a look.

· As you can see, XML has no pre-defined presentation.

· Add a link to a style-sheet file from the document. (See page 7 for how to do this for XML)

· Start off with an empty CSS file; how does the xhtml document look now?

· Now start defining CSS rules for XHTML elements so that the document begins to look reasonable.

Overview of properties, with examples and defaults
font-*:

family (Futura, serif, sans-serif, cursive, fantasy, monospace)

style (normal, italic, oblique)

variant (normal, small-caps)

weight (normal, bold, bolder, lighter, 100, …, 400, ..., 900)

size (10pt, 120%, small, medium, large, smaller, larger, ...)

color (red, ..., #f00, #ff0000, rgb(255,0,0), rgb(100%, 0, 0), …)
background-*:

color (transparent, red, black, white, gray, silver, red, maroon, yellow,olive,green,lime,blue,navy,purple,aqua,fuschia,teal, ...)

image (none, url(back.gif))

repeat (repeat, no-repeat, repeat-x, repeat-y)

attachment (scroll, fixed)

position (0% 0%, top left, center, center left, bottom right, ...)

Overview...

line-height (normal, 120%, ...)

word-spacing, letter-spacing (normal, 1%, 1px, ...)

vertical-align (baseline, sub, super, 10%, top, text-top, middle, ...)

text-*:

decoration (none, underline, overline, line-through, blink)
transform (none, uppercase, lowercase, capitalise)
align (justify, left, right, center)

indent (0, 4em, ...)

display (block, inline, list-item, none)
white-space (normal, pre, nowrap)
list-style*:

type (disc,circle,square,decimal,none,lower-roman,lower-alpha, ...)

image (url(sphere.gif), none)

position (inside, outside)

list-style (type position <url>)

Overview of box properties
margin-*: top, right, bottom, left (0, auto, 2em, 3pt, 1%, ...)

padding-*: top, right, bottom, left (0, 2em, 3pt, 1%, ...)

border-*:

width4 (thin, medium, thick, 2pt, ...)
style (none, dotted, dashed, solid, double, ...)
color4 (...)

top, right, bottom, left (width style colour)
top-width, bottom-width, right-width, left-width (medium, ...)

margin4 (top right bottom left)
padding4 (top right bottom left)
border (width style color)
height, width (auto, 100px, 15em, 50%, ...)
float (none, left, right)
clear (none, left, right, both)

