
Maps in XForms

Contents

1. Contents
2. Images
3. Mediatype
4. URL Structure
5. Input
6. Nudge
7. Zoom
8. Working zoom
9. Result

10. Location, location, location
11. Centering the location
12. Offsets
13. Result
14. Visible porthole
15. Mouse
16. Mouse state
17. Capturing a move
18. Start point
19. End point
20. Dragging the map
21. When the dragging's over
22. Result
23. Bells. Whistles
24. Result
25. Conclusion
26. Credit

Images

In XForms you can put the URL of an image in your data:

<instance>

 <data xmlns="">

 <url>http://tile.openstreetmap.org/10/511/340.png</url>

 </data>

</instance>

and output it with

<output ref="url"/>

This would give as output:

http://tile.openstreetmap.org/10/511/340.png

Mediatype

But if you add a mediatype to the <output>, the image itself is output instead:

<output ref="url" mediatype="image/*" />

Source

http://localhost/forms/examples/maps/map0.xhtml

URL Structure

An Open Street Map URL is made up as: http://<site>/<zoom>/<x>/<y>.png

So we can represent that in XForms data:

<instance>

 <map xmlns="">

 <site>http://tile.openstreetmap.org/</site>

 <zoom>10</zoom>

 <x>511</x>

 <y>340</y>

 <url/>

 </map>

</instance>

and calculate the URL from the parts:

<bind ref="url"

 calculate="concat(../site, ../zoom, '/', ../x, '/', ../y, '.png')"/>

Input

But now that we have the data, we can also input the different parts:

 <input ref="zoom"><label>zoom</label></input>

This means that we can enter different values for the tile coordinates, and because
XForms keep all relationships up-to-date, a new tile URL is calculated and the
corresponding tile is displayed.

Nudge

However, since entering numbers like this is inconvenient, we can also add some
nudge buttons, of the form:

<trigger>

 <label>→</label>

 <setvalue ev:event="DOMActivate" ref="x" value=". + 1"/>

</trigger>

so it looks like this:

−
zoom
10 +

←
x
526 →

↓
y
336 ↑

http://tile.openstreetmap.org/10/526/336.png

Source

http://localhost/forms/examples/maps/map1.xhtml

Zoom

The x and y nudge buttons work fine, the zoom button doesn't.

At each level of zoom the x and y coordinates change:

at the outermost level of zoom, 0, there is one tile, x=0, y=0.
At level 1, the coordinates double in both direction, [0-1], so there are 4 tiles;
at level 2, the coordinates are [0-3], and there are 8 tiles,
16 at level 3,
and in general 2z at level z (up to level 19).

Working zoom

So to make zoom work properly, we must save our location in world coordinates, each
value between 0 and 226 (which is the 18 levels of zoom, plus 8 bits for the 256 pixels
of each tile), and then calculate the tile at any level of zoom from that:

scale=226 - zoom
 x=floor(posx/scale)

 y=floor(posy/scale)

In XForms:

<bind ref="scale" calculate="power(2, 26 - ../zoom)"/>

<bind ref="x" calculate="floor(../posx div ../scale)"/>

<bind ref="y" calculate="floor(../posy div ../scale)"/>

Result

Now when you zoom in and out, the area remains the same:

−
zoom
10 +

←
posx
34477602 →

↓
posy
22058667 ↑

Scale
65536
http://tile.openstreetmap.org/10/526/336.png

Source

http://localhost/forms/examples/maps/map2.xhtml

Location, location, location

When you zoom in and out, you get the tile that includes the location, but that the
location is in a different place on each tile.

This is because if you have a tile where the location is in the middle of the tile, when
you zoom in, you get one of the 4 quadrants, and so by definition, the location is no
longer at the centre of the tile.

Centering the location

We create a 3×3 array of tiles, with a porthole over it.

The porthole stays static, and the tiles are shifted around underneath so that the
location remains in the centre.

Offsets

This is done by calculating offsets that the tile array has to be shifted by, and then
using these to construct a snippet of CSS to move the tile array:

<bind ref="offx"

 calculate="0 - floor(((../posx - ../x * ../scale) div ../scale)*../tilesi

<bind ref="offy"

 calculate="0 - floor(((../posy - ../y * ../scale) div ../scale)*../tilesi

 ...

<div style="margin-left: {offx}; margin-top: {offy}">

Result

Now we have a live map, where we can zoom in and out, and pan left and right and
up and down.

−
zoom
10 +

←
posx
34477602 →

↓
posy
22058667 ↑

Style
margin-left: -22px; margin-top: -150px;
http://tile.openstreetmap.org/10/526/336.png

Visible porthole

Source

To help understand how this works, here is a view also showing the parts that would
normally not be visible outside of the porthole:

−
zoom
10 +

←
posx
34477602 →

↓
posy
22058667 ↑

Style
margin-left: -22px; margin-top: -150px;
http://tile.openstreetmap.org/10/526/336.png

>

Source

http://localhost/forms/examples/maps/map3.xhtml
http://localhost/forms/examples/maps/translucent.xhtml

Mouse

Of course, what we really want is to be able to drag the map around with the mouse,
not have to click on nudge buttons. Now we're really going to see the power of live
data! We will want to know the position of the mouse, and the state of the button, up
or down. So we create instance data for that:

<mouse>

 <x/><y/><state/>

</mouse>

and then we catch the mouse events:

<action ev:event="mousemove">

 <setvalue ref="mouse/x" value="event('clientX')"/>

 <setvalue ref="mouse/y" value="event('clientY')"/>

</action>

<action ev:event="mousedown">

 <setvalue ref="mouse/state">down</setvalue>

</action>

<action ev:event="mouseup">

 <setvalue ref="mouse/state">up</setvalue>

</action>

Now we have live data for the mouse!

Mouse state

We can show the state of the mouse by adding a value for which cursor to use

<bind ref="cursor" calculate="if(../state='up', 'pointer', 'move')"/>

and styling suitably:

style="cursor: {cursor}"

Move mouse here
x: 0 y: 0 state: up
cursor: pointer

Source

http://localhost/forms/examples/maps/map4.xhtml

Capturing a move

The last bit is that we want is to save the start and end point of a move, so we can
calculate how far we have dragged. The instance data is extended:

<mouse>

 <x/><y/><state/><cursor/>

 <start><x/><y/></start>

 <end><x/><y/></end>

 <move><x/><y/></move>

</mouse>

Start point

We capture the start point of the drag when the mouse button goes down:

<action ev:event="mousedown">

 <setvalue ref="mouse/state">down</setvalue>

 <setvalue ref="mouse/start/x" value="event('clientX')"/>

 <setvalue ref="mouse/start/y" value="event('clientY')"/>

</action>

End point

While the mouse button is down, we save the end position:

<bind ref="mouse/end/x"

 calculate="if(/map/mouse/state = 'down', /map/mouse/x, .)"/>

<bind ref="mouse/end/y"

 calculate="if(/map/mouse/state = 'down', /map/mouse/y, .)"/>

And calculate the distance moved as just end - start:

<bind ref="mouse/move/x"

 calculate="mouse/end/x - mouse/start/x"/>

<bind ref="mouse/move/y"

 calculate="mouse/end/y - mouse/start/y"/>

Move and drag mouse here
x: 0 y: 0 state: up
start: , end: ,
move: 0, 0

Source

http://localhost/forms/examples/maps/map5.xhtml

Dragging the map

The position of the map is recorded in posx and posy, but now also depends on the
mouse dragging.

Add instance data to record the last position:

<lastx/><lasty/>

Keep posx and posy updated (we divide by the tile size to get the number of positions
represented by a pixel):

<bind ref="posx"

 calculate="../lastx - ../mouse/move/x * (../scale div ../tilesize)"/>

<bind ref="posy"

 calculate="../lasty - ../mouse/move/y * (../scale div ../tilesize)"/>

When the dragging's over

Reset lastx and lasty when the dragging stops:

<action ev:event="mouseup">

 <setvalue ref="lastx" value="posx"/>

 <setvalue ref="lasty" value="posy"/>

 <setvalue ref="mouse/start/x" value="mouse/end/x"/>

 <setvalue ref="mouse/start/y" value="mouse/end/y"/>

</action>

Result

Although from the user's point of view it feels like you are grabbing the map and
dragging it around, all that is happening underneath is that we are tracking the live
data representing the mouse, and using it to alter the live data that represents the
centre of the map.

−
zoom
10 +

Source

http://localhost/forms/examples/maps/map6.xhtml

Bells. Whistles

Once we have this foundation, it is trivial to add things like a "Home" button, to add
keystroke shortcuts, to zoom in and out with the mouse wheel, or to select tiles for
another version of the map. For instance:

<select1 ref="site">

 <label>Map</label>

 <item>

 <label>Standard</label>

 <value>http://tile.openstreetmap.org/</value>

 </item>

 <item>

 <label>Cycle</label>

 <value>http://tile.opencyclemap.org/cycle/</value>

 </item>

 <item>

 <label>Transport</label>

 <value>http://tile2.opencyclemap.org/transport/</value>

 </item>

 ...

</select1>

Thanks to the live data, any time a different value is selected for "site", all the tiles get
updated, without any further work from us.

Result

−
zoom
10 + Home Set Home

Map
Standard
Cycle
Transport
Impression

Source

Conclusion

A map like this can be seen as the presentation of two values, an x and y coordinate,
overlaid with an input control to affect the values of x and y.

The ability of XForms to abstract the data out of an application and make the data live
via simple declarative invariants makes the construction of interactive applications
extremely simple.

The above example is around 150 lines of XForms code, in sharp contrast to the
several thousand lines that a procedural programming language would need.

http://localhost/forms/examples/maps/map7.xhtml

Credit

Open Street Map data is © OpenStreetMap contributors, licensed as CC BY-SA.

http://www.openstreetmap.org/copyright

