
Declarative Applications

Contents

1. Contents
2. 1957: The first municipal computer (Norwich, UK)
3. 2015: The Raspberry Pi Zero
4. How do they compare?
5. How do they compare?
6. Compare
7. Compare
8. Moore's Law
9. The Price of Electricity

10. The Price of the Original Computers
11. Let's go back to 1957
12. Programming in the 50's
13. The design of programming languages
14. Back to now
15. Moore's Switch
16. Declarative programming
17. XForms
18. Example: 150 person years becomes 10!
19. Example: Insurance Industry
20. Example: Insurance Industry
21. Example: Insurance Industry
22. Example: NHS
23. Example: NHS
24. XForms
25. Form and content
26. XForms, an overview
27. Example
28. Map interface
29. Declarative Example
30. Live tile with working zoom
31. Map
32. Map
33. XForms, an overview
34. Example properties: relevant and required
35. Relevance
36. Relevance
37. Relevance
38. Events and Actions
39. Events and Actions
40. Content
41. Example control
42. On to the examples!
43. How to

 summer school

Declarative Applications

Steven Pemberton

CWI, Amsterdam

Licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International

Licence xmlsummerschool.com

1957: The first municipal computer (Norwich, UK)

Just one of 21 cabinets making up the computer.

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://xmlsummerschool.com/

2015: The Raspberry Pi Zero

The first computer so cheap that they gave it away on the cover of a magazine

How do they compare?

The Elliot ran for about a decade, 24 hours a day.

How long do you think it would take the Raspberry Pi Zero to duplicate that amount of
computing?

10 years?
1 year?
5 weeks?
5 days?
5 hours?
50 minutes?
5 minutes?

How do they compare?

The Elliot ran for about a decade, 24 hours a day.

How long do you think it would take the Raspberry Pi Zero to duplicate that amount of
computing?

10 years?
1 year?
5 weeks?
5 days?
5 hours?
50 minutes?
5 minutes!

The Raspberry Pi is about one million times faster...

Compare

The Raspberry Pi is not only one million times faster. It is also one millionth the price.

A factor of a million million.

A terabyte is a million million bytes: nowadays we talk in terms of very large numbers.

Want to guess how long a million million seconds is?

Compare

The Raspberry Pi is not only one million times faster. It is also one millionth the price.

A factor of a million million.

A terabyte is a million million bytes: nowadays we talk in terms of very large numbers.

Want to guess how long a million million seconds is?

30,000 years...

A really big number...

Moore's Law

In fact a million million times improvement is about what you would expect from
Moore's Law over 58 years.

Except: the Raspberry Pi is two million times smaller as well, so it is much better than
even that.

One reason for that is that originally computers were priced in an interesting way.

The Price of Electricity

When Edison first introduced electrical lighting, he priced the electricity not based on
the cost of manufacture, but on the cost of the same amount of light provided by
traditional means. The light cost the same, but with the advantage of ease of use, and
comparative safety.

(And indeed there are many reports of the deaths of well-to-do women because of
candles.)

The Price of the Original Computers

Similarly, the first computers were priced based on the cost of the people they were
replacing.

Let's go back to 1957

In the 50's, computers were so expensive that nearly no one bought them, nearly
everyone leased them.

To rent time on a computer then would cost you of the order of $1000 per hour:
several times the annual salary of a programmer!

When you leased a computer in those days, you would get programmers for free to
go with it.

Compared to the cost of a computer, a programmer was almost free.

Programming in the 50's

In the 50's the
computer's time was
expensive. A
programmer would:

write the program,
copy it to special
paper,
give it to a typist,
who would type it
out,
then give the result
to another typist who
would then type it
out again to check it.

Why? Because it was
much cheaper to let 3
people check it, than to
let the computer
discover the errors.

The design of programming languages

The first programming languages were designed in the 50s.

They were designed with the economic relationship of computer and programmer in
mind.

It was much cheaper to let the programmer spend lots of time producing a program
than to let the computer do some of the work for you.

Programming languages were designed so that you tell the computer exactly what to
do, in its terms, not what you want to achieve in yours.

Back to now

It happened slowly, almost unnoticed, but nowadays we have the exact opposite
position:

Compared to the cost of a programmer, a computer is almost free.

I call this Moore's Switch.

Moore's Switch

 Relative costs of computers and programmers, 1957-2017

But, we are still programming in programming languages that are direct descendants
of the languages designed in the 1950's!

We are still telling the computers what to do.

Declarative programming

A new way of programming: declarative programming.

This describes what you want to achieve, but not how to achieve it.

XForms

XForms is a declarative system that lets you define applications.

It is a W3C standard, and in worldwide use.

KNMI, The Dutch Weather Service
Many Dutch (e.g. Onderwijs, Kadaster?) and UK government websites
BBC
UK NHS
US Department of Motor Vehicles
the British Insurance industry,
the US Navy (in submarines),
NASA (Jet Propulsion Laboratories),
Verifone - a payment company, for configuring petrol pumps,
Xerox
Yahoo
Remia
EMC
...

Example: 150 person years becomes 10!

A certain company makes one-off BIG machines (walk in): user interface is very
demanding — traditionally needed 5 years, 30 people.

With XForms this became: 1 year, 10 people.

Do the sums. Assume one person costs 100k a year. Then this has gone from a 15M
cost to a 1M cost. They have saved 14 million! (And 4 years)

Example: Insurance Industry

Manager: I want you to come back to me in 2 days with estimates of how long it will
take your teams to make the application.

Example: Insurance Industry

Manager: I want you to come back to me in 2 days with estimates of how long it will
take your teams to make the application.

[Two days later]

Programmer: I'll need 30 days to work out how long it will take to program it.

Example: Insurance Industry

Manager: I want you to come back to me in 2 days with estimates of how long it will
take your teams to make the application.

[Two days later]

Programmer: I'll need 30 days to work out how long it will take to program it.

XFormser: I've already programmed it!

Example: NHS

The British National Health Service started a project for a health records system.

It involved 70 people
It cost £10M.
The hardware costs alone were £5 per patient.
It failed.

Example: NHS

The British National Health Service started a project for a health records system.

It involved 70 people.
It cost £10M.
The hardware costs alone were £5 per patient.
It failed.

One person then created a system using XForms.

Hardware costs are 1p per patient.
It runs on Raspberry Pi's.
It is now running in 5 NHS hospitals.

XForms

XForms 1.0 was designed for online Forms.

After some experience it was realised that the design had followed HTML too
slavishly, and with some slight generalisation, it could be more useful.

So was born XForms 1.1, a Turing-complete declarative programming language.

Implementations from Belgium, France, Germany, NL, UK, USA.

XForms 2.0 is in preparation.

And I am here today to tell you about it.

Form and content

"The term form refers to the work's style, techniques and media used, and
how the elements of design are implemented.

Content, on the other hand, refers to a work's essence, or what is being
depicted."

Wikipedia

This is a nearly-perfect description of XForms.

XForms applications have two parts

1. the model, describing the data, and its relationships;
2. the user interface, describing the content, and connecting to the values in the

model.

http://seveninformatics.com/cityehr/
https://en.wikipedia.org/wiki/Form_and_content

XForms, an overview

XForms is all about state. (Which means it meshes well with REST - Representational
State Transfer).

The data can be internal or come from external sources.
You describe the data: properties and relationships.
You can display any selection of values in the content.

Initially the system is in a state of stasis.

When a value changes, by whatever means, the system updates related values to
bring it back to stasis.

This is like spreadsheets, but much more general.

The result is: programming is much easier, since the system does all the
administrative work for you.

Example

I've got a position in the world as x and y coordinates, and I want to display the map
tile of that location at a certain zoom.

My data:

x, y, zoom

Openstreetmap has a REST interface for getting such a thing:

http://openstreetmap.org/<zoom>/<x>/<y>.png

Map interface

The coordinate system changes at each level of zoom.

As you zoom out, there are in each axis half as many tiles, so there are ¼ as many
tiles. And the interface indexes tiles, not locations.

So to get a tile:

1. You have to know how big a tile is
2. you have to calculate the correct index using this plus the zoom.

Source

Declarative Example

The data: x, y, zoom

scale = 2
26 - zoom

 tilex = floor(x/scale)
 tiley = floor(y/scale)
 url = concat("http://tile.openstreetmap.org/", zoom, "/", tilex,

"/", tiley, ".png")

That is really all that is needed (modulo syntax, which looks like this:)

<bind ref="tilex" calculate="floor(../x div ../scale)"/>

That's the form. Now the content:

<input ref="x" label="x"/>

<input ref="y" label="y"/>

<input ref="zoom" label="zoom"/>

<output ref="url" mediatype="image/*"/>

and the tile will be updated each time any of the values change.

Live tile with working zoom

−
zoom
10 +

←
posx
34477602 →

↓
posy
22058667 ↑

Scale
65536
http://tile.openstreetmap.org/10/526/336.png

http://localhost/forms/examples/maps/map2.xhtml

Map

−
zoom
10 +

Source

http://localhost/forms/examples/maps/map6.xhtml

Source

Map

−
zoom
10 + Home Set Home

Map
Standard
Cycle
Transport
Impression

XForms, an overview

Separation of data from UI, similar to separation of style from content with CSS, with
similar advantages.

Instances of data + properties.

<instance src="sale.xml"/>

<bind ref="something" property="something"/>

Properties include:

type
constraints
relevance conditions
optional/required
readonly/readwrite
calculations

As you saw above in the map example, whenever a value changes, the related
values are automatically updated, in spread-sheet style.

http://localhost/forms/examples/maps/map7.xhtml

Source

Example properties: relevant and required

<bind ref="address/state"

 required="../country = 'USA'"

 label="State"/>

This means that state is only required for the USA. The field will always be visible.

<bind ref="address/state"

 relevant="../country = 'USA'"

 required="true()"

 label="State"/>

This means that state will only be visible for the USA, but once visible will be
required.

Controls in the UI then bind to data nodes, inheriting their properties.

<input ref="address/state"/>

Relevance

Here is an example. If you select USA as country, the control for state appears.

Street

Street

City

Postcode

Country

http://localhost/forms/examples/address.xhtml

Source

Relevance

Similarly, the billing address is only relevant if it is different from the delivery address:

<bind ref="address[@type='Billing']"

 relevant="../@different=true()"/>

Relevance

Delivery and billing address are the same

Delivery address
Street

City

Country

Billing address
Street

City

Country

http://localhost/forms/examples/address1.xhtml

Events and Actions

Typically XForms works automatically.

You can hook into the processing model to respond in special ways.

Events announce changes in the state;
 actions effect changes to the state.

E.g. xforms-ready announces that the system has initialised (and is at stasis). You
could respond to this by recording today's date and time:

<action ev:event="xforms-ready">

 <setvalue ref="today" value="now()"/>

</action>

Events and Actions

Other events announce when a value changes, or when it changes validity,
relevance, etc.

Other useful actions include activating a button, and inserting and deleting elements
and attributes from data.

In fact the only way to get a vanilla button to do anything is to listen for the activation
event, and then respond with an action.

<trigger label="Restart">

 <action ev:event="DOMActivate">

 <setvalue ref="score" value="0"/>

 </action>

</trigger>

Content

The user-facing part is done with controls.

Controls are declarative too: they are designed to be device and modality
independent, and describe what they do, but now how they do it, nor how they look.

Source

Example control

For instance, the select1 control selects a value from a list of values. It can be
implemented visually as a menu, or as radio buttons, and it can be implemented in
other modalities as necessary.

<select1 ref="colour">

 <label>Colour:</label>

 <item><label>Red</label><value>red</value></item>

 <item><label>Yellow</label><value>yellow</value></item>

 <item><label>Green</label><value>lime</value></item>

 <item><label>Cyan</label><value>aqua</value></item>

 <item><label>Blue</label><value>blue</value></item>

 <item><label>Magenta</label><value>fuchsia</value></item>

 <item><label>Black</label><value>black</value></item>

 <item><label>White</label><value>white</value></item>

</select1>

For instance these three are just different visual representations of this control:

Colour:
Red
Yellow
Green
Cyan
Blue
Magenta
Black
White

Colour:

Colour:

Red
Yellow
Green

http://localhost/forms/controls.xhtml

On to the examples!

Viewing and searching data

A game

A calendar

Multilingual

Maps

Graphs

Presentation

How to

Download XSLTForms, and unpack it in a directory.

Template:

<?xml-stylesheet href="directory/xsltforms.xsl" type="text/xsl"?>

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ev="http://www.w3.org/2001/xml-events">

<head>

 <title></title>

 <style type="text/css">

 </style>

 <model xmlns="http://www.w3.org/2002/xforms">

 <instance>

 <data xmlns="">

 </data>

 </instance>

 </model>

</head>

<body>

 <group xmlns="http://www.w3.org/2002/xforms">

 </group>

</body>

</html>

http://localhost/Talks/2018/09-12-xml/dataview.html
http://localhost/Talks/2018/09-12-xml/game.html
http://localhost/Talks/2018/09-12-xml/calendar.html
http://localhost/Talks/2018/09-12-xml/multilingual.html
http://localhost/Talks/2018/09-12-xml/maps.html
http://localhost/Talks/2018/09-12-xml/graphs.html
http://localhost/Talks/2018/09-12-xml/presentation.html

