--- Specification of a simple slide puzzle

--- This game consists of a number of buttons

--- to control the game, a slidepane which

--- contains the puzzle itself, a mouse to

--- move the slides and click the buttons and

--- a HintWizard.

SlidePuzzle where

SlidePuzzle = ButtonPane

 || SlidePane

 || Mouse

 || HintWizard,

--- The Mouse process is modelled in order to express

--- the presence and possible actions of the mouse

Mouse = [(click_tile -> Mouse)

 [] (click_undo -> Mouse)

 [] (click_restart -> Mouse)

 [] (click_hint -> Mouse)],

--- The SlidePane consists of two communicating processes:

--- SlideMemory, which keeps track of the changes in the

--- configuration of the slides, and SlideMover, which

--- updates the current configuration of slides. At first

--- the process SlideMemoryStart will be started, this

--- process is used to start with a fresh puzzle

SlidePane = SlideMemoryStart

 || SlideMover,

--- The process SlideMemoryStart will get a fresh puzzle

--- (for example from disk, this is not modelled here), displays

--- this new-puzzle by echo_memory and will then continu

--- with the process SlideMemory

--- when the ButtonPane evokes an undo the slideMemory has to

--- send the resulting configuration to the SlideMover,

--- by means of echo_memory

--- when the ButtonPane evokes a reset the SlideMemory has to

--- send the original configuration to SlideMover, by means

--- of the corresponding echo_memory

SlideMemoryStart = (echo_memory -> SlideMemory),

SlideMemory = [(store_slides -> SlideMemory)

 [] (slide_undo -> echo_memory -> SlideMemory)

 [] (slide_reset -> echo_memory -> SlideMemory)],

--- The SlideMover takes care of the position of the slides,

--- it can react to a click_tile. If the move that the user

--- wants to do is possible, then the configuration of the

--- slides is stored, by evoking store_slides, and the slide

--- is moved. If the move is not possible nothing happens

--- Slides can also be moved by an echo_memory from the

--- SlideMemory

--- When the wizard moves a slide (hint_tile) then the move

--- is made without checking whether the move is possible,

--- as wizards are always right

SlideMover = [(click_tile ->

 [(store_slides -> move_tile -> SlideMover)

 [] SlideMover]

 [] (echo_memory -> SlideMover)

 [] (hint_tile -> store_slides ->

 move_tile -> SlideMover)],

--- The ButtonPane contains the buttons the user can click

--- with the mouse. Possible buttons are: undo, restart and

--- hint. The first two evoke action from the SlideMemory,

--- which takes further care of the necessary thing to do.

--- The latter evokes the HintWizard, which will determine

--- the best next move.

ButtonPane = [(click_undo -> slide_undo -> ButtonPane)

 [] (click_restart -> slide_reset -> ButtonPane)

 [] (click_hint -> call_wizard -> ButtonPane)],

--- Whenever the HintWizard is called by the user (by

--- clicking the corresponding button on the buttonpane)

--- the wizard calculates the best next move (the actual

--- calculation is not modelled here, the algorithms

--- themselves are not important for the interaction of the

--- game) and moves the slide by hint_tile to the SlideMover

HintWizard = (call_wizard -> hint_tile -> HintWizard)

General articles about specification techniques :

· J.C. Campos and M.D. Harrison. Formally verifying interactive systems: A review. In Proceedings of the Eurographics workshop ’97, pp. 109-124. Springer-Verlag, Wien.

· D.J. Duke and M.D. Harrison. From Formal Models to Formal Methods. In Proceedings of ICSE’94 workshop on SE-HCI. pp. 159-173. Lecture Notes in CS 896. Springer, 1995.

· A. Hall. Do interactive systems need specifications? In Proceedings of the Eurographics workshop ’97, pp. 1-12. Springer-Verlag, Wien.

Task analysis and GTA:

· Sutcliffe and P. Faraday. Designing Presentation in Multimedia Interfaces. In Proceedings ACM CHI’94. pp. 92-98.

· G.C. van der Veer, B.F. Lenting and B.A.J. Bergevoet, Groupware task analysis: Modeling Complexity. Acta Psychologica, 1991.
· GTA Homepage: http:\\www.cs.vu.nl\~martijn\gta
Examples of the use of GOMS:

· B. E. John, A.H. Vera and A. Newell. Towards Real-Time GOMS. Report, CMU-CS-90-195, Carnegie Mellon, Pittsburgh, 1990.

· J. Ziegler and H-J. Bullinger. Formal Models and Techniques in Human-Computer Interaction. In Human Factors for Informatics Usability. pp. 183-205. Cambridge University Press, 1991.

Explanation of the use of Z:

· J. Woodcock and J. Davies, Using Z – specification, refinement, and proof, Prentice Hall Europe, 1996.

CSP:

· C.A.R. Hoare, Communicating sequential processes, Prentice-Hall International, 1985.

Executable specifications for interactive systems:

· B. van Schooten, O. Donk and J. Zwiers. Modelling Interaction in Virtual Environments using Process Algebra. In Proceedings TWLT15, Interactions in Virtual Worlds, pp. 195-212. Twente University, 1999.

